

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Mass Spectroscopy of the Antileukemic Drug MGBG and Related Bis(Amidinohydrazones) ['Bis(Guanylhydrazones)']

Hannu Elo^a; Jorma Matikainen^a; Seppo Kaltia^a

^a Department of Chemistry, University of Helsinki Vuorikatu, Helsinki, Finland

To cite this Article Elo, Hannu , Matikainen, Jorma and Kaltia, Seppo(1990) 'Mass Spectroscopy of the Antileukemic Drug MGBG and Related Bis(Amidinohydrazones) ['Bis(Guanylhydrazones)']', *Spectroscopy Letters*, 23: 7, 865 — 876

To link to this Article: DOI: 10.1080/00387019008054465

URL: <http://dx.doi.org/10.1080/00387019008054465>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**MASS SPECTROSCOPY OF THE ANTILEUKEMIC DRUG MGBG
AND RELATED BIS(AMIDINOHYDRAZONES)
('BIS(GUANYLHYDRAZONES')]**

Key Words: Electron-Impact Mass Spectra, Fragmentation Routes, Glyoxal Bis(guanylhydrazone), Methylglyoxal Bis(guanylhydrazone), Polyamine Antimetabolites

Hannu Elo, Jorma Matikainen and Seppo Kaltia

Department of Chemistry
University of Helsinki
Vuorikatu 20
SF-00100 Helsinki 10
Finland

ABSTRACT

The first study on the mass spectroscopy of various bis(amidinohydrazone)s is reported. The compounds studied included the investigational antileukemic drugs methylglyoxal bis(amidinohydrazone) ['methylglyoxal bis(guanylhydrazone)', MGBG] and glyoxal bis(amidinohydrazone), as well as seven mono- and dialkylglyoxal analogs thereof. The results indicate that the free bases of these high-melting compounds are volatilized well enough to allow a facile detection of the molecular ions and to make mass spectroscopy of the underivatized compounds a suitable method for the verification of the identity of the substances. This result is of importance considering the development of novel analogs and derivatives. A compilation of electron-impact mass spectra is reported and possible

fragmentation routes are outlined. The fragmentation of the various congeners appears to occur essentially similarly, the main paths involving breakage of the carbon-carbon single bond in the glyoxal moiety or breakage of either one of the nitrogen-nitrogen single bonds.

INTRODUCTION

Thiele and Dralle reported glyoxal bis(amidinohydrazone) ['glyoxal bis(guanylhydrazone)', GBG]¹ and some analogous compounds in 1898². After those days, studies on the chemistry and spectroscopy of these compounds have, however, been almost totally neglected, in spite of the fact that GBG and its methylglyoxal analog MGBG were later found to be potent antileukemic and antiproliferative agents³⁻⁶ and also potent specific inhibitors of adenosylmethionine decarboxylase, a key enzyme of polyamine biosynthesis^{6,7}. In spite of intensive biochemical studies (for references, see^{8,9}), the ultimate mechanism of the antileukemic action of GBG and MGBG, as well as the reasons for the unusually strict structural requirements for antileukemic activity^{5,8-13} among this class of compounds, have remained unknown. Therefore, studies on the chemistry and spectroscopy of the agents are highly warranted, since the biochemical differences existing between the various congeners may well be due to some inherent chemical differences. Spectral studies are warranted also considering the development of rapid methods for the verification of the identity of the compounds and for the determination of the structures of novel analogs and derivatives.

Since the only previous report on the mass spectroscopy of bis(amidinohydrzones) appears to be that of Kourou-Daley et al.¹⁴, describing the gas chromatography - mass spectroscopy of the trimethylsilyl derivatives of MGBG and one of its analogs, we considered it worthwhile to study the possibilities to obtain useful

structural information on bis(amidinohydrazone)s with the aid of direct-inlet mass spectroscopy of the *underivatized* compounds. The results of those studies are reported here and indicate that in spite of their high melting points, the underivatized compounds are volatilized well enough to allow facile detection of the molecular ions and to make mass spectroscopy an attractive method in the identification of the compounds. The results also indicate that the fragmentation routes of various bis(amidinohydrazone)s are very similar to each other.

EXPERIMENTAL

All of the bis(amidinohydrazone)s studied were in the free base form). GBG free base was prepared via the corresponding nitrate and dimethylglyoxal bis(amidinohydrazone) (DMGBG) free base via DMGBG dihydrochloride essentially as described by Thiele and Dralle². The syntheses of the sulfate salts of the bis(amidinohydrazone)s of ethylglyoxal¹², ethylmethylglyoxal¹³, diethylglyoxal¹⁵, methylpropylglyoxal¹⁶, butylmethylglyoxal¹⁷ and dipropylglyoxal¹⁷ (EGBG, EMGBG, DEGBG, MPGBG, BMGBG and DPGBG, respectively) have been described elsewhere. The identity of the sulfates was verified by elementary analyses and ¹H and ¹³C NMR spectroscopy¹⁸⁻²⁰ and, in some cases, by X-ray diffraction^{13,15,21}. With the exception of EGBG, the free bases of these compounds were prepared by treating heated aqueous suspensions or solutions of the sulfate salts with a large excess of ca. 25 % (w/v) aqueous NaOH and by collecting the slightly soluble free bases by filtration of the cooled reaction mixtures. Further details of the syntheses of the bases will be described elsewhere. The methods used for the preparation and purification of the readily water soluble free bases of MGBG and EGBG have been described¹⁷. The free bases were identified by ¹H and ¹³C NMR¹⁸⁻²⁰. Also the structure of GBG free base was verified by single-crystal X-ray analysis²².

Electron-impact mass spectra were recorded with the aid of a JEOL JMS 01SG-2 mass spectrometer at 70 eV and 200 μ A using direct inlet.

RESULTS AND DISCUSSION

A generalized structural formula of the compounds studied is shown in Fig. 1. The compounds are shown in the form of the endiamine tautomer of which GBG free base was recently shown²² to exclusively consist in the solid state, and of which all of the free bases also appear to consist at least in DMSO solutions¹⁸. The results obtained are summarized in Tables 1-4. In all cases, one of the major peaks in the electron-impact mass spectrum was that of the molecular ion. In the case of symmetrical compounds ($R^1 = R^2$), a peak with an m/e ratio half that of the molecular ion (a), and thus consistent either with the formation ions (b) and (c) [see Fig. 1] or with the formation of the molecular dication, was observed. That the former is in question, is indicated by the fact that in the case of unsymmetrical compounds, peaks consistent with (b) and (c) were observed but peaks with an m/e ratio half that of the molecular ion were not. Thus, almost certainly, one (major) fragmentation route of bis(amidinohydrazone) (I) in electron-impact mass spectroscopy is based on the breakage of the carbon-carbon single bond in the glyoxal moiety. It is tempting to speculate that the resulting fragments (b) and (c) are perhaps stabilized by cyclization, e.g. to the five-ring structures (q) and (r), in which one of the nitrogen atoms is quaternary and bears the positive charge.

Another major fragmentation route also appears probable on the basis of the results: the breakage of either one of the nitrogen-nitrogen single bonds, leading to the formation of the ions (d) and (e) as well as the guanidine ions (j), (k), (l), and (m). This route is obviously very important, since in most cases, peaks with an m/e ratio consistent with (d) and (e) were predominant in the spectra.

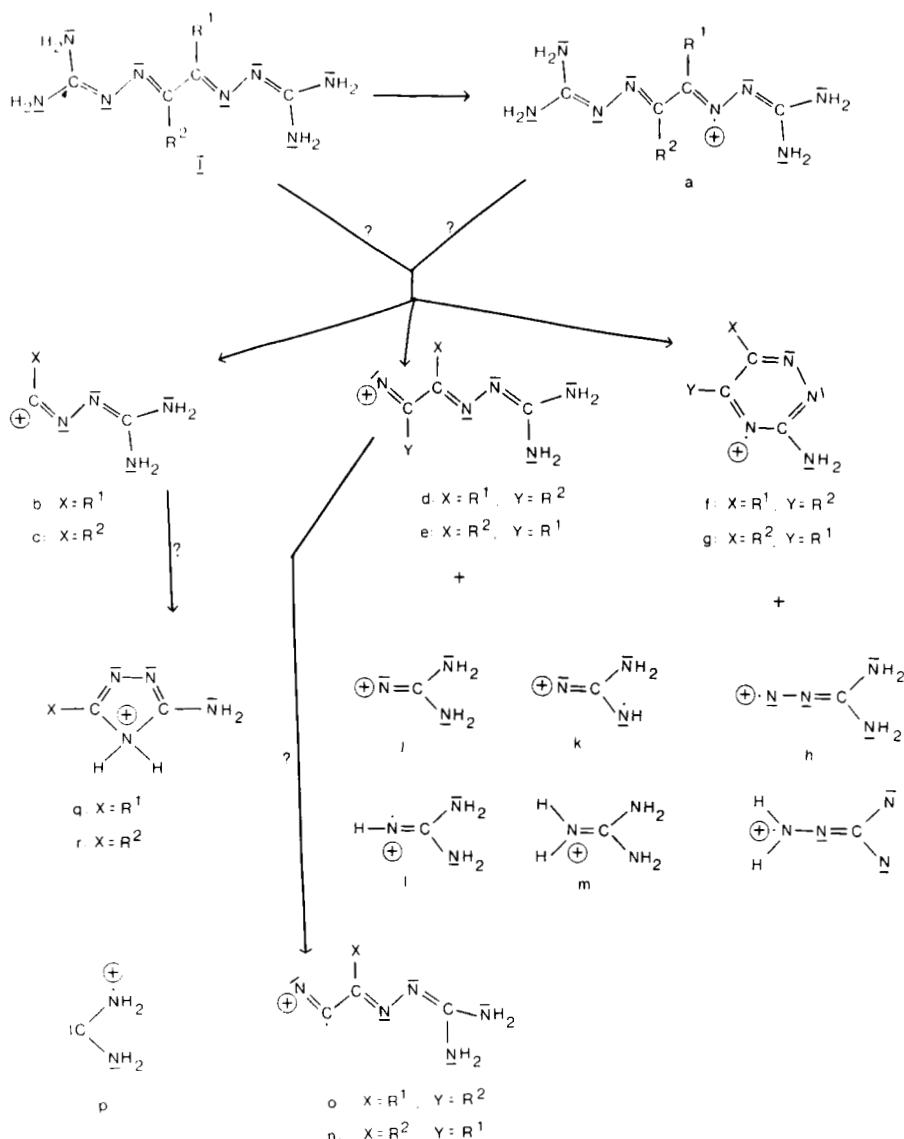


Fig. 1. A scheme showing the structures of the bis(amidinohydrazone) (I) studied, as well as the proposed fragments and fragmentation routes. Only one of the possible tautomers and resonance forms is shown in each case. It should be noticed that the bis(amidinohydrazone) studied consist of the *anti-anti* isomer only and, thus, any cyclization reactions must involve rearrangement of the double-bond system.

TABLE I.

The Electron-Impact Mass Spectra of GBG, MGBG and EGBG.

I = Intensity of the peak, given in % of the intensity of the highest peak.

GBG (I, R ¹ = R ² = H), 180°C			MGBG (I, R ¹ = CH ₃ , R ² = H), 170°C			EGBG (I, R ¹ = CH ₂ CH ₃ , R ² = H), 170°C		
m/e	I	Interpretation	m/e	I	Interpretation	m/e	I	Interpretation
42	35	p minus two H	42	25	p minus two H	41	11	p minus three H
43	100	p minus H	43	100	p minus H	42	12	p minus two H
44	48	p	44	44	p	43	48	p minus H
57	37	k	57	70	k	44	20	p
58	25	j	58	24	j	58	37	j
59	79	i	59	70	i	59	16	i
70	26	h minus 2 H	74	20	i	60	29	m
74	20	i	84	45	c minus one H	69	4	
85	58	b,c	85	23	c	74	11	i
96	16	f,g	99	60	b	85	14	c
112	27	d,e	111	7	f or g, plus one H; or n	98	23	
170	69	a	126	32	d,e	113	30	b
			127	20	d or e, plus one H, or with one C-13	124	7	f,g
						125	4	f or g, plus one H
			184	86	a	140	100	d,e
						141	12	d or e, plus one H or with one C-13
						198	39	a

TABLE 2.

The Electron-Impact Mass Spectra of DMGBG, EMGBG and BMGBG.

I = Intensity of the peak, given in % of the intensity of the highest peak.

DMGBG (I, R ¹ = CH ₃), 180 ⁰ C			EMGBG (I, R ¹ = CH ₂ CH ₃ , R ² = CH ₃), 160 ⁰ C			BMGBG (I, R ¹ = CH ₂ CH ₂ CH ₂ CH ₃ , R ² = CH ₃), 150 ⁰ C		
m/e	I	Interpretation	m/e	I	Interpretation	m/e	I	Interpretation
43	48	p minus H	43	34	p minus H	41	14	
44	21	p	44	19	p	41	11	
57	41	k	57	16	k	43	30	p minus H
59	11	l	58	21	j	44	14	p
59	11	m	59	11	j	57	27	k
60	11	m	60	12	m	58	8	j
68	11	h	67	11	h	59	12	j
72	12	h	68	12	h	60	13	m
74	11	i	86	11	c	72	11	h
98	42	b or c, minus one H	99	13	c	97	11	c minus two H
99	22	b,c	112	30	b minus one H	98	11	c minus one H
124	13	f,g	138	14	f or g, minus 2 H	99	13	c
125	14	f or g, plus one H; or n,o	139	12	f or g, minus one H	110	11	
140	100	d,e	154	100	d,e	124	20	n minus one H
141	13	d or e, plus one H or with one C-13	155	13	d or e, plus one H or with one C-13	140	31	b minus one H
198	31	a	212	30	a	141	12	b
						167	11	f or g, plus one H
						182	100	d,e
						183	17	d or e, plus one H or with one C-13
						240	28	a

TABLE 3.

The Electron-Impact Mass Spectra of MPGBG and DEGBG.

I = Intensity of the peak, given in % of the intensity of the highest peak.

MPGBG (I, R ¹ = CH ₂ CH ₂ CH ₃ , R ² = CH ₃ , 120° C)		MPGBG, 120° C, continued		DEGBG (I, R ¹ = R ² = CH ₂ CH ₃ , 130° C)	
m/e	I	Interpretation	m/e	I	Interpretation
43	28	p minus H	169	14	d or e, plus one H or with one C-13
44	13	p	226	34	a
55	9	k minus two H			
58	38	j			
59	10	l			
60	12	m			
72	9	i			
83	6				
98	9	c minus one H			
100	9	c plus one H, or with one C-13	41	18	p minus three H
124	9	n minus one H	43	34	p minus H
126	32	b minus one H	44	20	p
127	11	b	58	27	j
151	9	f or g, minus one H	126	35	b minus one H; or n plus one H
152	9	f,g	168	100	d,e
153	10	f or g, plus one H or with one C-13; or o	169	19	d or e, plus one H or with one C-13
168	100	d,e	226	34	a

TABLE 4.

The Electron-Impact Mass Spectrum of DPGBG (I, $R^1 = R^2 = CH_2CH_2CH_3$).

I = Intensity of the peak, given in % of the intensity of the highest peak. Temperature: $140^{\circ}C$.

m/e	I	Interpretation	m/e	I	Interpretation
43	57	p minus H	154	53	n or o, plus one H
44	26	p	180	17	f,g
54	13	CN_3^+	181	13	f or g, plus one H or with one C-13
57	82	k	196	100	d,e
58	26	j	197	36	d or e, plus one H or with one C-13
59	25	l	254	67	a
70	15	h minus two H	255	13	M+1 (one C-13)
83	15				
100	30				
111	17				
127	30	b,c			
152	18	n or o, minus one H			

An intramolecular cyclization reaction, giving (f) and (g) as well as the aminoguanidine type ions (h) and (i) as the products, may perhaps also occur, since this postulated route can easily explain the formation of several ions whose formation is difficult to explain otherwise, and would indeed give a six-membered ring structure with considerable resonance stabilization. The verification of this putative route, however, requires further studies.

In some cases, some minor peaks observed are most easily explained by assuming the formation of the radical ions (n) and (o), possibly by loss of one of the alkyl side chains from (d) and (e).

A typical property of all of the spectra was the presence of peaks with an m/e ratio of 44, 43, 42, and/or 41, these peaks being

most probably due to fragments formed from the terminal guanidino groups of the molecule [(p) and deprotonated forms thereof].

The above results indicate that useful structural information may be derived from the electron-impact mass spectra of bis(amidinohydrazone)s in spite of the relatively high melting points of the compounds. This result is of obvious practical value since the development of different kinds of novel analogs and derivatives of GBG and MGBG is currently actively ongoing in various laboratories. The extensive possibilities for resonance stabilization of the degradation products may well be an important factor that facilitates the detection of the fragments observed.

REFERENCES

1. Bis(amidinohydrazone)s are commonly called 'bis(guanylhydrazone)'. Therefore, their established abbreviations contain the letters GBG, preceded by an indication of the substituents (e.g., DE for diethyl or EM for ethyl methyl). The term 'bis(amidinohydrazone)' is, however, more appropriate. The Chemical Abstracts' systematic name of methylglyoxal bis(amidinohydrazone) is 2,2'-(1-methyl-1,2-ethanediylidene)bis(hydrazinecarboximidamide), and other congeners are named analogously.
2. Thiele J., Dralle E. Zur Kenntniss des Amidoguanidins. I. Condensationsprodukte des Amidoguanidins mit Aldehyden und Ketonen der Fettreihe. *Liebig's Ann. Chem.* 1989, 302: 275.
3. Freedlander BL., French FA. Carcinostatic Action of Polycarbonyl Compounds and Their Derivatives. *Cancer Res.* 1958; 18: 360.
4. Freireich EJ., Frei E., Karon M. Methylglyoxal Bis(guanylhydrazone): A New Agent Active Against Acute Myelocytic Leukemia. *Cancer Chemother. Rep.* 1962; 16: 183.
5. Mihich E. Bis-Guanylhydrazone. In: Sartorelli AC., Johns DG. eds. *Handbook of Experimental Pharmacology*, Vol. 38/2. Berlin, New York: Springer Verlag 1975: 766-788.
6. Seppänen P., Fagerström R., Alhonen-Hongisto L., Elo H., Lumme P., Jänne J. Glyoxal Bis(guanylhydrazone) as an Inhibitor of Polyamine Biosynthesis in Tumour Cells. *Biochem. J.* 1984; 221: 483.

7. Williams-Ashman HG., Schenone A. Methyl Glyoxal Bis(guanylhydrazone) as a Potent Inhibitor of Mammalian and Yeast S-Adenosylmethionine Decarboxylases. *Biochem. Biophys. Res. Commun.* 1972; 46: 288.
8. Alhonen-Hongisto L., Seppänen P., Nikula P., Elo H., Jänne J., Structure-Activity Relationship of Bis(guanylhydrazone). *Recent Progr. Polyamine Res.* 1985; 261.
9. Jänne J., Alhonen-Hongisto L., Nikula P., Elo H. S-Adenosylmethionine Decarboxylase as Target of Chemotherapy. *Adv. Enz. Regul.* 1986; 24: 125.
10. Podrebarac EG., Nyberg WH., French FA., Cheng CC. Studies on Methylglyoxal Bis(guanylhydrazone) Analogs. I. Homologs of Methylglyoxal Bis(guanylhydrazone). *J. Med. Chem.* 1963; 6: 283.
11. Baoicchi F., Cheng CC., Haggerty WJ., Lewis LR., Liao TK., Nyberg WH., O'Brien DE., Podrebarac EG. Studies on Methylglyoxal Bis(guanylhydrazone) Analogs. II. Structural Variations on Methylglyoxal Bis(guanylhydrazone). *J. Med. Chem.* 1963; 6: 431.
12. Elo H., Laine R., Alhonen-Hongisto L., Jänne J., Mutikainen I., and Lumme P. Biochemical Characterization of Propylglyoxal Bis(guanylhydrazone). Facile Synthesis of Monoalkylglyoxal Bis(guanylhydrazones). *Z. Naturforsch.* 1985; 40c: 839.
13. Elo H., Mutikainen I., Alhonen-Hongisto L., Laine R., Jänne J., and Lumme P. Biochemical Properties and Crystal Structure of Ethylmethylglyoxal Bis(guanylhydrazone) Sulfate an Extremely Powerful Novel Inhibitor of Adenosylmethionine Decarboxylase. *Z. Naturforsch.* 1986; 41c: 851.
14. Kourou-Daley S., Peace JN., Nielsen CJ. A Gas Chromatographic and Mass Spectral Approach to the Analysis of the Anticancer Drug Methyl-G as the Trimethylsilyl Derivative. *Biomed. Mass. Spectrom.* 1981; 8: 219.
15. Elo H., Mutikainen I., Alhonen-Hongisto L., Laine R., and Jänne J. Diethylglyoxal Bis(guanylhydrazone): a Novel Highly Potent Inhibitor of S-Adenosylmethionine Decarboxylase with Promising Properties for Potential Chemotherapeutic use. *Cancer Lett.* 1988; 41: 21.
16. Elo H. Unpublished results.
17. Elo H. *Bis(amidinohydrazones) ['Bis(guanylhydrazones)'] as Antineoplastic Agents. Chemical and Biochemical Studies*, Ph.D. Thesis, Department of Biochemistry, University of Helsinki, Helsinki, Finland, 1989.

18. Elo H. Proton Nuclear Magnetic Resonance Spectroscopy of Bis(amidinohydrazone)s (Bis(guanylhydrazone)s), and its Use for Studies on the Isomerism and Tautomerism of the Compounds. *Spectroscopy Lett.* 1989; 22: 123.
19. Elo H. Carbon-13 NMR Spectroscopy of the Antileukemic Drug MGBG and Related Bis(amidinohydrazone)s [Bis(guanylhydrazone)s]. *Spectroscopy Lett.* 1989; 22: 161.
20. Elo H., Soljamo K. Unambiguous Assignment of the ^{13}C NMR Resonances of the Side-Chain Carbon Atoms of Dipropylglyoxal Bis(amidinohydrazone) by DEPT and Selective Heteronuclear Proton Decoupling Techniques. *Spectroscopy Lett.* 1989; 22: 1141.
21. Lumme P., Mutikainen I. and Elo H. Structure of Propylglyoxal Bis(amidinohydrazone) Sulfate Dihydrate. *Acta Cryst.* 1986; C42: 1209.
22. Mutikainen I., Elo H., Tilus, P. Manuscript in preparation.

Date Received: 04/04/90
Date Accepted: 05/05/90